
Lingua Project
(10) Program correctness in Lingua

(Sec. 9.1 and 9.2)

Andrzej Jacek Blikle

April 5th, 2025

The book "Denotational Engineering" may be downloaded from:

https://moznainaczej.com.pl/what-has-been-done/the-book

Propositional calculus of Mc'Carthy
(non-transparent operations)

Apr 5th, 2025 A.Blikle - Denotational Engineering; part 10 (19) 2

if x ≠ 0 and 1/x < 10 then x := x+1 else x := x–1 fi

If and is transparent, then our program aborts for x = 0.

The solution of John McCarthy:

ff and-m ee = ff ― lazy evaluation from left to right

or-m tt ff ee

tt tt tt tt

ff tt ff ee

ee ee ee ee

and-m tt ff ee

tt tt ff ee

ff ff ff ff

ee ee ee ee

not-m

tt ff

ff tt

ee ee

error or undefinedness

Propositional calculus of Mc'Carthy
(some properties)

Apr 5th, 2025 A.Blikle - Denotational Engineering; part 10 (19) 3

and-m, or-m ― associative (if only one ee)

p and-m q ≠ q and-m p ― not commutative

p or-m (not p) ≠ ff ― never false

and-m is distributive over or-m only on the right-hand side, i.e.

p and-m (q or-m s) = (p and-m q) or-m (p and-m s)

Propositional calculus of Kleene

Apr 5th, 2025 A.Blikle - Denotational Engineering; part 10 (19) 4

or-k tt ff ee

tt tt tt tt

ff tt ff ee

ee tt ee ee

and-k tt ff ee

tt tt ff ee

ff ff ff ff

ee ee ff ee

not-k

tt ff

ff tt

ee ee

Even „more lazy” than McCarthy’s calculus

Now commutativity

p or-k q = q or-k p

p and-k q = q and-k p

hence in particular

tt or-k ee = ee or-k tt = tt

ff and-k ee = ee and-k ff = ff

If ee may be an infinite

computation, then Kleene's

calculus requires a simultaneous

evaluation of arguments.

Syntactic categories of Lingua-V
(V stands for „validating”)

Apr 5th, 2025 A.Blikle - Denotational Engineering; part 10 (19) 5

Lingua-V includes all categories of Lingua (in colloquial version) plus five new

categories:

1. conditions – representing partial 3-valued (Kleene’s) partial predicates.

2. assertions – instructions aborting programs when a condition is

 not satisfied

3. specified programs – programs with nested assertions

4. metaconditions – describing relationships between conditions

5. metaprograms – specified programs with pre- and post-conditions

An example of a metaprogram:

pre x,k is integer and-k k > 0: - a precondition

x := 0;

asr x = 0 rsa; - an assertion

while x+1 ≤ k do x := x+1 od

post x = k - a postcondition

Conditions

Apr 5th, 2025 A.Blikle - Denotational Engineering; part 10 (19) 6

Some specific notation

cod : ConDen = WfState → BooValE – the denotations of conditions

val : BooVal = {tv, fv} | Error

tv = (tt, ’boolean’)

fv = (ff, ’boolean’)

con : Condition – the syntactic domain of conditions

[] : Condition ⟼ ConDen – the semantics of conditions

[con] : WfState → BooValE – the denotation of con (transparent for errors)

{con} = {sta | [con].sta = tv} – the truth domain of con

NT : Condition – a special condition called nearly true

[NT].sta =

 is-error.sta ➔ error.sta – transparency for errors

 true ➔ tv

con is error-sensitive if it has one of two following properties:

if is-error.sta then [con].sta = error.sta con is error-transparent

if is-error.sta then [con].sta = fv con is error-negative

Value-oriented conditions

Apr 5th, 2025 A.Blikle - Denotational Engineering; part 10 (19) 7

Value-oriented conditions include:

1. all value expressions with boolean values but with Kleene's operators,

2. some specific conditions, e.g.:

 vex-1 = vex-2 – (in Lingua, we do not allow for the comparison of

 arbitrary

 values)

 increasingly ordered (ide) – where ide points to an array

 vex is value – vex evaluates cleanly

 …

Basic value-, type-, reference-
oriented conditions
(constructors of conditions)

Apr 5th, 2025 A.Blikle - Denotational Engineering; part 10 (19) 8

(1) att at-ide is tex with yex in cl-ide as pst

– at-ide is declared with tex and yex in class cl-ide…

(2) ty-ide is type in cl-ide, – ty-ide is declared as type constant in class cl-ide

(3) var ide is tex with yex, – ide is a declared variable of type tex and yoke yok

(4) rex is reference, – reference expression rex evaluates cleanly

(5) vex is value, – value expression vex evaluates cleanly

(6) vex is tex – vex evaluates cleanly and its value is of type indicated

 by tex (which evaluates cleanly)

(7) tex is type, – type expression tex evaluates cleanly

(8) cli is class, – cli is either empty-class or an identifier of a declared

 class

(9) ide child of cli – ide is an identifier of a declared class which is a child of

 class indicated by cli

(10) tex1 covers tex2, – tex1 and tex2 evaluate cleanly and…

(11) ide is free – ide has not been declared

Procedure-oriented conditions
(constructors of conditions)

Apr 5th, 2025 A.Blikle - Denotational Engineering; part 10 (19) 9

Examples:

• pr-ide (val fpv ref fpr) begin body end imperative in cl-ide,

• fu-ide (val fpv ref tex) begin body return vex end functional in cl-ide,

• ob-ide (val fpv ref ob-ide) begin body end objectional in cl-ide,

• procedure cl-ide.pr-ide opened ,

• (pass actual val apa-v ref apa-r to formal val fpa-v ref fpa-r with cl-ide to con

Procedure-oriented conditions (cont.)

Apr 5th, 2025 A.Blikle - Denotational Engineering; part 10 (19) 10

[pr-ide (val fpc-v ref fpc-r) begin body end imperative in cl-ide].sta =

 is-error.sta ➔ error.sta

 let

 ((cle, pre, cov), sto) = sta

 cle.cl-ide = ? ➔ ‘class unknown’

 let

 (cl-ide, tye, mee, obn) = cle.cl-ide

 mee.pr-ide = ? ➔ ‘pre-procedure unknown’

 let

declared-pre-proc = mee.pr-ide

 expected-pre-proc = create-imp-pre-pro.([fpd-v], [fpd-r], [body])

 declared-pre-proc ≠ expected-pre-proc ➔ fv

 true ➔ tv

Our condition claims three facts:

1. cl-ide is a name of a declared class,

2. pr-ide is a name of a procedure in this class,

3. pre-procedure pointed by pr-ide is equal to a pre-procedure that

would be created by a declaration

 proc pr-ide (val fpc-v, ref fpc-r) begin body end.

 (a claim about a denotational effect of a declaration)

Procedure-oriented conditions (cont.)

Apr 5th, 2025 A.Blikle - Denotational Engineering; part 10 (19) 11

[pass actual val apa-v ref apa-r to formal val fpa-v ref fpa-r with cl-ide to con]

 : WfState ⟶ BooValE

[pass actual val apa-v ref apa-r to formal val fpa-v ref fpa-r with cl-ide to con].sta =

 is-error.sta ➔ error.sta

 let

 (env, sto) = sta

 new-sto = pass-actual.(fpa-v, fpa-r, apa-v, apa-r, cl-ide).env.sto

 is-error.new-sto ➔ error.new-sto

 let

 new-sta = (env, new-sto)

 true ➔ [con].new-sta

Condition con is satisfied after passing of actual parameters to formal parameters

by a procedure call.

Assertions

Apr 5th, 2025 A.Blikle - Denotational Engineering; part 10 (19) 12

asr : Assertion = asr Condition rsa

[asr] : WfState → WfState

[asr con rsa].sta =

 is-error.sta ➔ sta

[con].sta = ? ➔ ?

[con].sta : Error ➔ sta ◄ [con].sta

[con].sta = fv ➔ sta ◄ ‘assertion not satisfied’

 true ➔ sta

An error message will be generated by assertions in two situations:

1. when the value of the condition is an error,

2. when the condition is not satisfied.

Anchored class transformers

Apr 5th, 2025 A.Blikle - Denotational Engineering; part 10 (19) 13

Class transformers:

ctd : ClaTraDen = Identifier ⟼ WfState → WfState.

Anchored class transformers:

act : AncClaTra = ClaTra in Identifier

with the following semantics:

[ctr in ide] : WfState → WfState

[ctr in ide] = [ctr].ide.

the identifier of a class

 to be transformed

Specified programs

Apr 5th, 2025 A.Blikle - Denotational Engineering; part 10 (19) 14

sin : SpeIns = specified instructions (specinstructions)

Instruction |

Assertion |

SpeIns ; SpeIns |

asr con in SpeIns rsa | on-zone instructions

off con in SpeIns on | off-zone instructions

if ValExp then SpeIns else SpeIns fi |

if-error ValExp then SpeIns fi |

while ValExp do SpeIns od |

skip-ins

sde : SpeDec = specified declarations (specdeclarations)

 Declaration |

 Assertion |

 SpeDec ; SpeDec |

 skip-dec

Specified programs (cont.)

Apr 5th, 2025 A.Blikle - Denotational Engineering; part 10 (19) 15

sct : SpeClaTra = specified class transformers (spectransformers)

 AncClaTra |

 Assertion |

 SpeClaTra ; SpeClaTra |

 skip-sct

spp : SpeProPre = specified program preambles (specpreambles)

 SpeDec |

 SpeIns |

 SpeProPre ; SpeProPre |

 skip-spp

spr : SpePro = specified programs (specprograms)

SpeProPre ; open procedures ; SpeIns |

SpeProPre |

SpeClaTra

Algorithmic conditions

Apr 5th, 2025 A.Blikle - Denotational Engineering; part 10 (19) 16

con : AlgCondition =

 SpePro @ Condition | left algorithmic conditions

 Condition @ SpePro right algorithmic conditions

[] : AlgCondition ⟼ WfState ⟼ {tv, fv}

[spr @ con].sta =

 (∃ sta1 : {con}) [spr].sta = sta1 ➔ tv i.e. [con].([spr].sta) = tv

true ➔ fv

[con @ spr].sta =

 (∃ sta1 : {con}) [spr].sta1 = sta ➔ tv

 true ➔ fv

Since algorithmic conditions

are 2-valued, they are

unambiguously identified by

their truth domains:

{spr @ con} = [spr] ● {con}

{con @ spr} = {con} ● [spr]

We assume that

conditions are closed

under @.

None of them is error-transparent and:

• if spr is error transparent and con is

error sensitive, then spr @ con is

error negative,

• con @ spr need not be error sensitive.

Metaconditions
(formulas of our 2-valued logic of programs)

Apr 5th, 2025 A.Blikle - Denotational Engineering; part 10 (19) 17

Atomic metaconditions:

con1  con2 iff (def) {con1} ⊆ {con2} metaimplication; stronger than

con1 con2 iff (def) {con1} = {con2} weak equivalence

con1 ⊑ con2 iff (def) [con1] ⊆ [con2] better definedness; more defined than

con1 ≡ con2 iff (def) [con1] = [con2] strong equivalence

MetaConditions = the least language that includes atomic metaconditions and is

closed under 2-valued propositional connectives and quantifiers.

x > 0 and-kl 2 𝑥 > 2 ≡ x > 4
2 𝑥 > 2  x > 4 but ≡ does not hold,
2 𝑥 > 4  x > 3 but neither  nor ⊑ holds.
2 𝑥 < 2 ⊑ x < 4 if 2 𝑥 undefined for x < 0

con1 ≡ con2 iff con1 ⊑ con2 and con2 ⊑ con1

con1  con2 iff con1  con2 and con2  con1

con1 ≡ con2 implies con1  con2

con1 ≡ con2 implies con1 ⊑ con2

con1  con2 implies con1  con2

Three linguistic levels

Apr 5th, 2025 A.Blikle - Denotational Engineering; part 10 (19) 18

implies-kl : Condition x Condition ⟼ Condition constructor in Lingua-V

 : Condition x Condition ⟼ {tt, ff} constructor in MetaLingua

implies : {tt, ff} x {tt, ff} ⟼ {tt, ff} classical implication in MetaLingua

(con1 implies-k con2) ≡ NT implies con1  con2

Lingua – a (classical) programming language

Lingua-V – a language of validating programming

 metaprograms used to talk about programs

MetaLingua – a language of a logic to talk about metaprograms

con1  con2 does not imply (con1 implies-kl con2) ≡ NT.

Despite that the metaimplication 2 𝑥 > 4  x > 3 holds, the condition

2 𝑥 > 4 implies-k x > 3

is undefined for x < 0.

Apr 5th, 2025 19A.Blikle - Denotational Engineering; part 10 (19)

Thank you for

your attention

	Slajd 1: Lingua Project (10) Program correctness in Lingua (Sec. 9.1 and 9.2)
	Slajd 2: Propositional calculus of Mc'Carthy (non-transparent operations)
	Slajd 3: Propositional calculus of Mc'Carthy (some properties)
	Slajd 4: Propositional calculus of Kleene
	Slajd 5: Syntactic categories of Lingua-V (V stands for „validating”)
	Slajd 6: Conditions
	Slajd 7: Value-oriented conditions
	Slajd 8: Basic value-, type-, reference- oriented conditions (constructors of conditions)
	Slajd 9: Procedure-oriented conditions (constructors of conditions)
	Slajd 10: Procedure-oriented conditions (cont.)
	Slajd 11: Procedure-oriented conditions (cont.)
	Slajd 12: Assertions
	Slajd 13: Anchored class transformers
	Slajd 14: Specified programs
	Slajd 15: Specified programs (cont.)
	Slajd 16: Algorithmic conditions
	Slajd 17: Metaconditions (formulas of our 2-valued logic of programs)
	Slajd 18: Three linguistic levels
	Slajd 19

